Properties

Label 486.213.18.c1
Order $ 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 16 & 23 \\ 3 & 19 \end{array}\right), \left(\begin{array}{rr} 10 & 0 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3\times C_6.\He_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(C_3\times S_3^2)$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(54\)\(\medspace = 2 \cdot 3^{3} \)
$W$$\He_3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3\times C_6.\He_3$
Minimal over-subgroups:$C_9:C_3^2$$C_3.\He_3$$C_9:C_6$
Maximal under-subgroups:$C_3^2$$C_9$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$-3$
Projective image$C_6\times \He_3$