Properties

Label 486.211.54.g1
Order $ 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $(C_3\times C_{18}):C_3^2$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2\times C_{18}$
Normalizer:$C_3^2\times C_{18}$
Normal closure:$C_3\times C_9$
Core:$C_3$
Minimal over-subgroups:$C_3\times C_9$$C_3\times C_9$$C_3\times C_9$$C_{18}$
Maximal under-subgroups:$C_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_6\times \He_3$