Properties

Label 48400.j.55.b1
Order $ 2^{4} \cdot 5 \cdot 11 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times F_{11}$
Order: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}c^{80}, b^{2}c^{198}, c^{55}, a^{2}c^{12}, b^{11}c^{24}, c^{110}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{55}:(Q_8\times F_{11})$
Order: \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{44}.C_{10}^2$
Normal closure:$C_{55}:(Q_8\times F_{11})$
Core:$C_{11}:Q_8$
Minimal over-subgroups:$C_{11}:(Q_8\times F_{11})$$C_{44}.C_{10}^2$
Maximal under-subgroups:$C_4\times F_{11}$$C_4\times F_{11}$$C_{44}.C_{10}$$C_{44}.C_{10}$$C_{44}.C_{10}$$Q_8\times D_{11}$$Q_8\times C_{10}$

Other information

Number of subgroups in this autjugacy class$110$
Number of conjugacy classes in this autjugacy class$10$
Möbius function$1$
Projective image$C_5\times D_{22}:F_{11}$