Properties

Label 48400.j.20.d1
Order $ 2^{2} \cdot 5 \cdot 11^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{20}$
Order: \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $c^{55}, c^{110}, b^{2}c^{198}, a^{2}c^{12}, c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{55}:(Q_8\times F_{11})$
Order: \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times C_{11}^2.C_{10}.\PSL(2,11).C_2$
$W$$D_{11}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{55}:(Q_8\times F_{11})$
Minimal over-subgroups:$C_5\times C_{11}^2:C_{20}$$C_{44}:F_{11}$$C_{44}.F_{11}$
Maximal under-subgroups:$C_{11}^2:C_{10}$$C_{11}\times C_{44}$$C_{11}:C_{20}$$C_{11}:C_{20}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$-2$
Projective image$C_5\times D_{22}:F_{11}$