Properties

Label 48400.j.12100.c1
Order $ 2^{2} $
Index $ 2^{2} \cdot 5^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{11}c^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{55}:(Q_8\times F_{11})$
Order: \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{20}\times F_{11}$
Normalizer:$C_{44}.C_{10}^2$
Normal closure:$C_{11}:Q_8$
Core:$C_2$
Minimal over-subgroups:$C_{11}:C_4$$C_{44}$$C_{20}$$C_{20}$$C_2\times C_4$$Q_8$$Q_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$44$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$110$
Projective image$C_5\times D_{22}:F_{11}$