Properties

Label 4840.bq.2.c1.b1
Order $ 2^{2} \cdot 5 \cdot 11^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:D_{10}$
Order: \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)
Index: \(2\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $ad^{5}, b^{2}c^{6}d, c^{2}d^{10}, b^{5}, d$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_{11}^2:D_{10}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$\operatorname{res}(S)$$F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{11}^2:D_{10}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_{11}^2:D_{10}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_{11}^2:D_{10}$
Maximal under-subgroups:$C_{11}^2:D_5$$C_{11}^2:D_5$$C_{11}:F_{11}$$D_{11}^2$$D_{10}$
Autjugate subgroups:4840.bq.2.c1.a14840.bq.2.c1.c14840.bq.2.c1.d1

Other information

Möbius function$-1$
Projective image$C_2\times C_{11}^2:D_{10}$