Properties

Label 48000.ba.800.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (2,5,4)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $D_5^2.C_2^2\times S_5$
Order: \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $D_5^2.C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $D_5^2.C_2^3.S_4$, of order \(19200\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:D_5.A_4.C_4.S_5$
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$D_5^2.C_2^2$
Normalizer:$D_5^2.C_2^2\times S_5$
Complements:$D_5^2.C_2^3$ $D_5^2.C_2^3$ $D_5^2.C_2^3$ $D_5^2.C_2^3$
Minimal over-subgroups:$C_5\times A_5$$S_5$$C_2\times A_5$$C_2\times A_5$$S_5$$S_5$
Maximal under-subgroups:$A_4$$D_5$$S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^2.C_2^2\times S_5$