Subgroup ($H$) information
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(3,5)(6,7)(8,9)(11,13)(12,15), (6,7)(8,9)(11,13)(12,15), (1,4)(3,5)(6,15)(7,12)(8,13)(9,11)(10,14)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $D_5^2.C_2^2\times S_5$ |
| Order: | \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5:D_5.A_4.C_4.S_5$ |
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2250$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $D_5^2.C_2^2\times S_5$ |