Properties

Label 480.973.10.b1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \SL(2,3)$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, d^{10}, b^{2}, cd^{5}, d^{5}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $D_{10}.S_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\GL(2,3):C_2$
Normal closure:$D_5\times \SL(2,3)$
Core:$\SL(2,3)$
Minimal over-subgroups:$D_5\times \SL(2,3)$$\GL(2,3):C_2$
Maximal under-subgroups:$\SL(2,3)$$C_2\times Q_8$$C_2\times C_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$D_5\times S_4$