Subgroup ($H$) information
| Description: | $C_5\times Q_8$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$c, d^{4}, d^{10}, d^{15}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $\GL(2,3):D_5$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_{10}$ | |||
| Normalizer: | $\GL(2,3):D_5$ | |||
| Minimal over-subgroups: | $C_5\times \SL(2,3)$ | $D_{20}:C_2$ | $C_5\times \SD_{16}$ | $Q_8:D_5$ |
| Maximal under-subgroups: | $C_{20}$ | $Q_8$ |
Other information
| Möbius function | $-6$ |
| Projective image | $D_5\times S_4$ |