Subgroup ($H$) information
| Description: | $C_3:C_4$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $ab, c^{30}, c^{40}$ | 
| Derived length: | $2$ | 
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_3:(Q_8\times C_{20})$ | 
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_{20}$ | 
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) | 
| Automorphism Group: | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) | 
| Outer Automorphisms: | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) | 
| Derived length: | $1$ | 
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^5.C_2^5)$ | 
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $0$ | 
| Projective image | $D_6\times C_{20}$ | 
