Properties

Label 480.484.2.f1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.D_{20}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac, c^{2}, b^{2}, d^{3}, bc^{5}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_6\times D_{20}):C_2$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6\times S_3\times F_5$
$\operatorname{Aut}(H)$ $C_2^3\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_6\times D_{20}):C_2$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_6\times D_{20}):C_2$
Maximal under-subgroups:$C_6\times D_{10}$$C_6:C_{20}$$C_{30}:C_4$$D_{10}:C_4$$C_6.D_4$

Other information

Möbius function$-1$
Projective image$S_3\times D_{10}$