Subgroup ($H$) information
| Description: | $C_6.D_{20}$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Index: | \(2\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$a, c^{12}, b^{2}, c^{30}, b, c^{40}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(C_2\times C_{12}).D_{10}$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6\times S_3\times F_5$ |
| $\operatorname{Aut}(H)$ | $C_2^3\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Related subgroups
| Centralizer: | $C_2^2$ | ||||
| Normalizer: | $(C_2\times C_{12}).D_{10}$ | ||||
| Minimal over-subgroups: | $(C_2\times C_{12}).D_{10}$ | ||||
| Maximal under-subgroups: | $C_6\times D_{10}$ | $C_6:C_{20}$ | $C_{30}:C_4$ | $D_{10}:C_4$ | $C_6.D_4$ |
Other information
| Möbius function | $-1$ |
| Projective image | $S_3\times D_{10}$ |