Properties

Label 480.1201.6.b1.b1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:D_4$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,5)(2,8)(3,4)(6,7), (1,2)(3,7)(4,6)(5,8)(10,11)(12,13), (1,3)(4,5), (2,7)(6,8), (9,12,11,10,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^4:D_{15}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times \POPlus(4,3)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^4:D_5$
Normal closure:$C_2^4:D_{15}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_2^4:D_5$
Maximal under-subgroups:$C_5:D_4$$C_5:D_4$$C_2\times D_{10}$$C_{10}:C_4$$C_2^2\times C_{10}$$C_2\times D_4$
Autjugate subgroups:480.1201.6.b1.a1480.1201.6.b1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_2^4:D_{15}$