Properties

Label 480.1201.24.b1.b1
Order $ 2^{2} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,4)(3,5), (2,8)(6,7), (9,12,11,10,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^4:D_{15}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times \POPlus(4,3)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^4:D_5$
Normal closure:$C_2^3\times C_{10}$
Core:$C_5$
Minimal over-subgroups:$C_5:D_4$$C_2^2\times C_{10}$$C_2^2\times C_{10}$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$
Autjugate subgroups:480.1201.24.b1.a1480.1201.24.b1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_2^4:D_{15}$