Subgroup ($H$) information
Description: | $S_3\times D_{10}$ |
Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$a, c^{2}, d^{20}, b, d^{6}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2\times D_6\times F_5$ |
Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4:S_3^2\times F_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\operatorname{res}(S)$ | $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $6$ |
Number of conjugacy classes in this autjugacy class | $6$ |
Möbius function | $2$ |
Projective image | $D_6\times F_5$ |