Subgroup ($H$) information
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $F_{16}:C_2$ |
Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{16}:C_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_4$ | ||
Normalizer: | $C_2\times D_4$ | ||
Normal closure: | $C_2^4:D_5$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $D_4$ | $D_4$ | $C_2\times C_4$ |
Maximal under-subgroups: | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $30$ |
Möbius function | $0$ |
Projective image | $F_{16}:C_2$ |