Properties

Label 480.1097.4.x1.d1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_{10}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ad^{30}, c, d^{40}, b, d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{12}:D_{10}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^2.C_2^6)$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_6\times D_{10}$
Normal closure:$D_6\times D_{10}$
Core:$S_3\times D_5$
Minimal over-subgroups:$D_6\times D_{10}$
Maximal under-subgroups:$S_3\times D_5$$S_3\times C_{10}$$C_3\times D_{10}$$D_{30}$$S_3\times D_5$$S_3\times D_5$$S_3\times D_5$$C_2\times D_{10}$$C_2\times D_6$
Autjugate subgroups:480.1097.4.x1.a1480.1097.4.x1.b1480.1097.4.x1.c1480.1097.4.x1.e1480.1097.4.x1.f1480.1097.4.x1.g1480.1097.4.x1.h1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{12}:D_{10}$