Properties

Label 480.1097.12.x1.e1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, c, d^{12}, bd^{45}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{12}:D_{10}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^2.C_2^6)$
$\operatorname{Aut}(H)$ $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{10}$
Normal closure:$D_6\times D_{10}$
Core:$D_5$
Minimal over-subgroups:$S_3\times D_{10}$$C_2^2\times D_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$C_2^3$
Autjugate subgroups:480.1097.12.x1.a1480.1097.12.x1.b1480.1097.12.x1.c1480.1097.12.x1.d1480.1097.12.x1.f1480.1097.12.x1.g1480.1097.12.x1.h1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_{12}:D_{10}$