Subgroup ($H$) information
| Description: | $C_5:\SD_{16}$ |
| Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Generators: |
$ac, d^{15}, d^{10}, b^{3}c, d^{4}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{20}.S_4$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| $\operatorname{res}(S)$ | $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_5:D_4$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_4$ | |||
| Normalizer: | $C_{20}.D_4$ | |||
| Normal closure: | $C_{20}.S_4$ | |||
| Core: | $C_{10}$ | |||
| Minimal over-subgroups: | $C_{20}.D_4$ | |||
| Maximal under-subgroups: | $C_5\times D_4$ | $C_5:Q_8$ | $C_5:C_8$ | $\SD_{16}$ |
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $C_{10}:S_4$ |