Properties

Label 480.1031.6.b1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{20}:C_2$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d^{5}, d^{10}, b^{3}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{20}.S_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_5:D_4$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{20}.D_4$
Normal closure:$C_{20}.S_4$
Core:$C_{20}$
Minimal over-subgroups:$C_{20}.D_4$
Maximal under-subgroups:$C_5:D_4$$C_2\times C_{20}$$C_4\times D_5$$D_{20}$$C_5:Q_8$$D_4:C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_5:S_4$