Properties

Label 476.4.2.a1.a1
Order $ 2 \cdot 7 \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{238}$
Order: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Index: \(2\)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Generators: $a^{238}, a^{340}, a^{28}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{476}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{48}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{476}$
Normalizer:$C_{476}$
Minimal over-subgroups:$C_{476}$
Maximal under-subgroups:$C_{119}$$C_{34}$$C_{14}$

Other information

Möbius function$-1$
Projective image$C_2$