Properties

Label 47520.a.11880.a1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(11880\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\langle(2,8)(4,5)(6,10)(9,11)(12,13), (12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $S_3\times M_{11}$
Order: \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times \GL(2,3)$
Normalizer:$C_2\times \GL(2,3)$
Normal closure:$S_3\times M_{11}$
Core:$C_1$
Minimal over-subgroups:$D_{10}$$C_2\times C_6$$D_6$$D_6$$D_6$$C_2\times C_4$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$$C_2$

Other information

Number of subgroups in this conjugacy class$495$
Möbius function$-96$
Projective image$S_3\times M_{11}$