Properties

Label 4752.h.264.g1.b1
Order $ 2 \cdot 3^{2} $
Index $ 2^{3} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 34 & 0 \\ 0 & 34 \end{array}\right), \left(\begin{array}{rr} 0 & 125 \\ 54 & 0 \end{array}\right), \left(\begin{array}{rr} 312 & 0 \\ 0 & 312 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{132}:C_{18}$
Order: \(4752\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{36}$
Normalizer:$C_2\times C_{36}$
Normal closure:$C_9\times D_{66}$
Core:$C_9$
Minimal over-subgroups:$C_9\times D_{11}$$S_3\times C_9$$C_2\times C_{18}$
Maximal under-subgroups:$C_9$$C_6$
Autjugate subgroups:4752.h.264.g1.a1

Other information

Number of subgroups in this conjugacy class$66$
Möbius function not computed
Projective image$D_{132}:C_2$