Properties

Label 4752.h.2.c1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{36}\times D_{33}$
Order: \(2376\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 11 \)
Index: \(2\)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 125 & 0 \\ 0 & 149 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 362 \end{array}\right), \left(\begin{array}{rr} 228 & 0 \\ 0 & 218 \end{array}\right), \left(\begin{array}{rr} 99 & 0 \\ 0 & 393 \end{array}\right), \left(\begin{array}{rr} 124 & 0 \\ 0 & 381 \end{array}\right), \left(\begin{array}{rr} 110 & 0 \\ 0 & 314 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{132}:C_{18}$
Order: \(4752\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_{33}.C_{30}.C_2^4$
$\card{\operatorname{res}(S)}$\(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{66}$, of order \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$D_{132}:C_{18}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{132}:C_{18}$
Maximal under-subgroups:$C_9\times D_{66}$$C_3\times C_{396}$$C_{33}:C_{36}$$C_{12}\times D_{33}$$D_{11}\times C_{36}$$S_3\times C_{36}$
Autjugate subgroups:4752.h.2.c1.b1

Other information

Möbius function not computed
Projective image$D_{66}$