Subgroup ($H$) information
Description: | $C_{47}$ |
Order: | \(47\) |
Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(47\) |
Generators: |
$a^{10}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $47$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{470}$ |
Order: | \(470\)\(\medspace = 2 \cdot 5 \cdot 47 \) |
Exponent: | \(470\)\(\medspace = 2 \cdot 5 \cdot 47 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,47$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Quotient group ($Q$) structure
Description: | $C_{10}$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{92}$, of order \(184\)\(\medspace = 2^{3} \cdot 23 \) |
$\operatorname{Aut}(H)$ | $C_{46}$, of order \(46\)\(\medspace = 2 \cdot 23 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{46}$, of order \(46\)\(\medspace = 2 \cdot 23 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{470}$ | |
Normalizer: | $C_{470}$ | |
Complements: | $C_{10}$ | |
Minimal over-subgroups: | $C_{235}$ | $C_{94}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $1$ |
Projective image | $C_{10}$ |