Properties

Label 466560.s.72.BC
Order $ 2^{4} \cdot 3^{4} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_6$
Order: \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,3,4,5)(7,11,14)(8,10,15)(9,12,13), (7,8,9)(10,12,11)(13,14,15), (7,14,11)(8,15,10)(9,13,12), (1,3)(2,6)(4,5)(7,8,9)(10,15,11,14,12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times S_6:D_6$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$W$$S_3\times S_6$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3\times S_3\times S_6$
Normal closure:$(C_3^3\times A_6):S_4$
Core:$A_6$
Minimal over-subgroups:$\He_3:S_6$$C_3\times S_3\times S_6$
Maximal under-subgroups:$C_3^2\times A_6$$C_3\times S_6$$C_3:S_6$$C_3^2:S_5$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$