Properties

Label 466560.s.72.B
Order $ 2^{4} \cdot 3^{4} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_3\times S_5$
Order: \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(2,6,5), (7,11)(8,10)(9,12), (7,8,9)(13,14,15), (7,14,12)(8,13,11)(9,15,10), (10,12,11)(13,14,15), (4,5)(10,13)(11,14)(12,15)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_5\times C_3^2:\GL(2,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$W$$C_3^2:C_6\times S_5$, of order \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3\wr S_3\times S_5$
Normal closure:$C_3^3:S_4\times S_6$
Core:$C_1$
Minimal over-subgroups:$C_3^2:S_3\times S_6$$C_3\wr S_3\times S_5$
Maximal under-subgroups:$\He_3\times S_5$$C_3^2:S_3\times A_5$$\He_3:S_5$$\GL(2,4):D_6$$\GL(2,4):D_6$$C_6^2:S_3^2$$C_3^2:S_3\times F_5$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$