Properties

Label 466560.s.216.L
Order $ 2^{4} \cdot 3^{3} \cdot 5 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times S_6$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,13,10)(8,14,12)(9,15,11), (1,2,3,4,5)(7,10,13)(8,12,14)(9,11,15), (1,3)(2,6)(4,5)(7,10,13)(8,12,14)(9,11,15)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_6:C_2^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$C_2\times S_6$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3\times S_3\times S_6$
Normal closure:$C_3^3:A_4\times S_6$
Core:$S_6$
Minimal over-subgroups:$A_4\times S_6$$C_3^2\times S_6$$S_3\times S_6$
Maximal under-subgroups:$C_3\times A_6$$S_6$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$