Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(116640\)\(\medspace = 2^{5} \cdot 3^{6} \cdot 5 \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(1,5)(2,6)(3,4)(10,14)(11,13)(12,15), (2,6)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_3^3:S_4\times S_6$ |
| Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | not computed | ||
| Normalizer: | not computed | ||
| Normal closure: | $C_3^3:S_4\times S_6$ | ||
| Core: | $C_1$ | ||
| Minimal over-subgroups: | $D_6$ | ||
| Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $1620$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_3^3:S_4\times S_6$ |