Properties

Label 46656.hu.8.H
Order $ 2^{3} \cdot 3^{6} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $\langle(1,14,16)(2,9,18), (1,5,2)(3,4,6)(7,12,10)(8,11,13)(9,16,15)(14,17,18), (3,4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_{3088}.C_{24}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Minimal over-subgroups:$C_2\times C_3^4.S_3^2.C_2$$(C_3\times \He_3).D_6^2$$C_3^4.C_3^2.C_2^4$$C_2\times \He_3^2:D_4$$(C_2\times \He_3^2).D_4$
Maximal under-subgroups:$C_3^4.C_6^2$$(C_3^2\times \He_3).D_6$$C_3^4.(C_6\times S_3)$$(C_3^2\times \He_3).D_6$$C_2\times C_3^3:S_3^2$$C_2\times C_3^3:S_3^2$$C_2\times C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$\He_3^2:(C_2^2\times D_4)$