Properties

Label 46656.hu.8.C
Order $ 2^{3} \cdot 3^{6} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $\langle(1,14,16)(2,9,18), (20,21), (1,5,2)(3,4,6)(7,12,10)(8,11,13)(9,16,15)(14,17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$S_3^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Complements:$D_4$ $D_4$
Minimal over-subgroups:$C_2\times C_3^4.C_3^2.C_2^3$$C_2\times C_3^4.S_3^2.C_2$$(C_3^2\times C_6^2):S_3^2$
Maximal under-subgroups:$C_2\times C_2:(C_3^3.C_3^3)$$C_3^4.C_3:S_3.C_2$$C_3^4.C_3:S_3.C_2$$C_2\times (C_3^3.C_3^3):C_2$$C_6\times C_3^3:D_6$$C_2\times C_3^4:D_6$$C_6\times C_3^3:D_6$$C_2\times C_3^4:D_6$$C_6\times C_3^3:D_6$$C_2\times C_3^4:D_6$$C_2\times C_3^4:D_6$$C_2\times C_3^4:D_6$$C_2\times C_3^4:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{1205}:C_{120}$