Properties

Label 46656.hu.4.A
Order $ 2^{4} \cdot 3^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $\langle(1,14,16)(2,9,18), (1,2)(9,14)(15,17)(16,18), (20,21), (1,5,2)(3,4,6)(7,12,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_{3088}.C_{24}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2\times C_3^4.C_3^2.C_2^4$$C_3^4.C_6^2.C_2^3$
Maximal under-subgroups:$C_2\times C_3^4.C_6^2$$C_3^4.C_6^2.C_2$$C_2\times (C_3\times \He_3).C_6^2$$C_3^4.C_6^2.C_2$$C_2\times C_3^4.C_6^2$$C_2\times C_3^4:C_6.C_2^2$$C_2\times C_3^3.C_6^2.C_2$$C_2\times C_3^4.(C_2^2\times C_6)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\He_3^2:(C_2^2\times D_4)$