Subgroup ($H$) information
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,15,18)(2,16,17)(3,11)(4,6,7,8,13,12)(5,9,14)(20,21), (1,18)(2,16)(4,12)(6,13)(7,8)(9,14), (1,15,18)(2,16,17)(4,13,7)(5,9,14)(6,12,8)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_6^2:S_3^2:S_3^2$ |
| Order: | \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_3^2.C_2^6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | not computed | ||
| Normalizer: | not computed | ||
| Normal closure: | $C_2\times C_3^4.C_3^2.C_2^4$ | ||
| Core: | $C_1$ | ||
| Minimal over-subgroups: | $C_2\times D_6$ | ||
| Maximal under-subgroups: | $S_3$ | $S_3$ | $C_2^2$ |
Other information
| Number of subgroups in this autjugacy class | $2592$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | not computed |
| Projective image | $C_6^2:S_3^2:S_3^2$ |