Properties

Label 46656.hu.288.A
Order $ 2 \cdot 3^{4} $
Index $ 2^{5} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3\times C_6$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,5,2)(3,4,6)(7,12,10)(8,11,13)(9,16,15)(14,17,18), (3,4,6)(7,12,10)(8,11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6^2:C_2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^2.C_2^6.C_2^4$
Outer Automorphisms: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$D_6:D_6$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2\times C_6^2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Minimal over-subgroups:$C_3^4:C_6$$C_3^2\times C_6^2$$C_3^3:D_6$$C_3^3:D_6$
Maximal under-subgroups:$C_3^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\He_3^2:(C_2^2\times D_4)$