Properties

Label 46656.hu.24.FD
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_3^2:S_3^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,18)(2,16)(4,12)(6,13)(7,8)(9,14), (3,10,11)(4,7,13)(6,12,8), (1,14,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4:C_3.C_2^6$
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$\He_3.C_6^2.C_2^2$
Normal closure:$C_2\times C_3^4.C_3^2.C_2^4$
Core:$C_3^2$
Minimal over-subgroups:$C_2\times C_3^4.S_3^2$$\He_3.C_6^2.C_2^2$
Maximal under-subgroups:$C_3^3:C_6^2$$C_3^4:D_6$$C_3^3:C_6^2$$C_3^3:S_3^2$$C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_6^2:S_3^2:S_3^2$