Properties

Label 46656.hu.24.BO
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^3:C_6^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(20,21), (1,16,14)(2,9,18)(3,8,7)(4,11,12)(5,15,17)(6,13,10), (3,4,6)(7,12,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^3.C_6^2.C_3^3.C_2^5$
$W$$C_3.S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_3^3.D_6^2$
Normal closure:$C_2\times C_3^4.S_3^2.C_2$
Core:$C_3^2\times C_6^2$
Minimal over-subgroups:$C_2\times C_3^4.(C_6\times S_3)$$C_2\times C_3^4.(C_2^2\times C_6)$$C_2\times \He_3.(C_6\times S_3).C_2$$C_2\times C_3^4.D_6.C_2$
Maximal under-subgroups:$\He_3\times C_6^2$$C_3^3:C_6^2$$C_3^3:C_6^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$\He_3^2:(C_2^2\times D_4)$