Properties

Label 46656.ee.2.A
Order $ 2^{5} \cdot 3^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.(C_3\times S_3)$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{3}, d^{3}e^{3}f, c^{4}d^{4}e^{2}, b^{6}, e^{3}, a^{2}, b^{8}c^{3}d^{3}f, c^{3}d^{3}, c^{2}d^{2}, f, d^{2}e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_6^4.C_3^5.C_2^3$
$W$$C_6^4.D_6$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_6^4.S_3^2$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_6^4.S_3^2$
Maximal under-subgroups:$C_6^4.C_3^2$$C_6^4.S_3$$C_6^4.S_3$$C_3^3\times (C_2^3\times C_6):S_3$$C_6^4.S_3$$C_3^5.S_4$$C_3^5.S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.S_3^2$