Subgroup ($H$) information
Description: | $C_{1158}$ |
Order: | \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \) |
Generators: |
$b^{386}, a^{2}, b^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{12}\times D_{193}$ |
Order: | \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \) |
Exponent: | \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^4:(C_2\times C_4)$, of order \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(772\)\(\medspace = 2^{2} \cdot 193 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{2316}$ | ||
Normalizer: | $C_{12}\times D_{193}$ | ||
Minimal over-subgroups: | $C_3\times D_{386}$ | $C_{2316}$ | $C_{193}:C_{12}$ |
Maximal under-subgroups: | $C_{579}$ | $C_{386}$ | $C_6$ |
Other information
Möbius function | $2$ |
Projective image | $D_{386}$ |