Properties

Label 4632.k.4.a1.a1
Order $ 2 \cdot 3 \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1158}$
Order: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Generators: $b^{386}, a^{2}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{12}\times D_{193}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:(C_2\times C_4)$, of order \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(772\)\(\medspace = 2^{2} \cdot 193 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{2316}$
Normalizer:$C_{12}\times D_{193}$
Minimal over-subgroups:$C_3\times D_{386}$$C_{2316}$$C_{193}:C_{12}$
Maximal under-subgroups:$C_{579}$$C_{386}$$C_6$

Other information

Möbius function$2$
Projective image$D_{386}$