Properties

Label 4632.d.2.a1.a1
Order $ 2^{2} \cdot 3 \cdot 193 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{12}$
Order: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Index: \(2\)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Generators: $a^{6}, a^{8}, b, a^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{193}:C_{24}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{193}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_{193}.C_{96}.C_2^3$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{193}:C_4$, of order \(772\)\(\medspace = 2^{2} \cdot 193 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{193}:C_{24}$
Minimal over-subgroups:$C_{193}:C_{24}$
Maximal under-subgroups:$C_{1158}$$C_{193}:C_4$$C_{12}$

Other information

Möbius function$-1$
Projective image$C_{193}:C_4$