Subgroup ($H$) information
Description: | $C_{210}$ |
Order: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Generators: |
$b^{1155}, b^{1386}, b^{660}, b^{770}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{11}\times D_{210}$ |
Order: | \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_{22}$ |
Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
Automorphism Group: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Outer Automorphisms: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_5:F_5^2$, of order \(100800\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{2310}$ | |||
Normalizer: | $C_{11}\times D_{210}$ | |||
Complements: | $C_{22}$ $C_{22}$ | |||
Minimal over-subgroups: | $C_{2310}$ | $D_{210}$ | ||
Maximal under-subgroups: | $C_{105}$ | $C_{70}$ | $C_{42}$ | $C_{30}$ |
Other information
Möbius function | $1$ |
Projective image | $C_{11}\times D_{105}$ |