Properties

Label 46080.bx.4.J
Order $ 2^{8} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.D_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(6,7)(8,9), (2,4,5)(6,7)(10,11)(12,14,13,15), (8,10,9,11)(12,13)(14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2:C_{44}$, of order \(2949120\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $(C_2^3\times A_4).C_2^3.S_5$
$W$$C_2\times S_4\times S_5$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times S_4\times S_5$