Properties

Label 46080.bx.2.J
Order $ 2^{9} \cdot 3^{2} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_{12}\times S_5$
Order: \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,5)(2,4,3)(6,7)(8,9)(12,13)(14,15), (6,7)(8,9), (1,2), (6,10,9)(7,11,8), (12,15,13,14), (12,13)(14,15), (8,9), (8,10,9,11)(12,13), (8,9)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2:C_{44}$, of order \(2949120\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_5\times F_5^2$, of order \(737280\)\(\medspace = 2^{14} \cdot 3^{2} \cdot 5 \)
$W$$C_2^2\times S_4\times S_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times S_4\times S_5$