Subgroup ($H$) information
| Description: | $C_{10}.C_4^3$ |
| Order: | \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 12 \\
8 & 5
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
5 & 17 \\
14 & 3
\end{array}\right), \left(\begin{array}{rr}
19 & 3 \\
16 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 5 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 10 \\
0 & 11
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5\times S_5\times C_2^2\times S_4$ |
| $\operatorname{Aut}(H)$ | $C_5:(C_2^5.C_2^5.C_2^4)$ |
| $W$ | $C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $18$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2\times S_4\times S_5$ |