Properties

Label 46080.b.72.CQ
Order $ 2^{7} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.C_4^3$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 5 & 17 \\ 14 & 3 \end{array}\right), \left(\begin{array}{rr} 19 & 3 \\ 16 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5\times S_5\times C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_5:(C_2^5.C_2^5.C_2^4)$
$W$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^{16}.\PSL(2,7)$
Normal closure:$A_4:C_4\times \GL(2,5)$
Core:$C_2\times C_4$
Minimal over-subgroups:$(C_2\times C_4):\GL(2,5)$$C_{10}.(D_4\times C_4^2)$$(C_2\times D_{20}):C_4^2$$D_{10}:C_4^3$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_4\times S_5$