Properties

Label 46080.b.60.CM
Order $ 2^{8} \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 9 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 14 & 9 \end{array}\right), \left(\begin{array}{rr} 5 & 4 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5\times S_5\times C_2^2\times S_4$
$\operatorname{Aut}(H)$ $A_4.C_2^5.C_2^6$
$W$$C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_2^3\times Q_8).C_6.C_4.C_2$
Normal closure:$C_2\times S_4\times \GL(2,5)$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_2^3:\GL(2,5)$$(C_2^2\times C_4).\GL(2,\mathbb{Z}/4)$$(C_2^2\times C_4).\GL(2,\mathbb{Z}/4)$$C_4^2.(C_2^2\times S_4)$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_4\times S_5$