Properties

Label 46080.b.48.D
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \GL(2,5)$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 3 & 2 \\ 6 & 13 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 2 & 19 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5\times S_5\times C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2\times D_4\times S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^4:C_{12}$
Normalizer:$\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_6\times \GL(2,5)$$C_2^2\times \GL(2,5)$$C_2^2\times \GL(2,5)$$C_2^2\times \GL(2,5)$$C_2^2:\GL(2,5)$$C_4:\GL(2,5)$
Maximal under-subgroups:$\SL(2,5):C_2^2$$\GL(2,5)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_4\times S_5$