Properties

Label 46080.b.4.N
Order $ 2^{8} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4\times \GL(2,5)$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 8 \\ 12 & 9 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 13 & 12 \\ 16 & 13 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 6 & 5 \\ 5 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5\times S_5\times C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2^3\times S_5\times S_4$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\card{W}$\(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times S_4\times \GL(2,5)$
Normal closure:$C_2\times S_4\times \GL(2,5)$
Core:$A_4\times \GL(2,5)$
Minimal over-subgroups:$C_2\times S_4\times \GL(2,5)$
Maximal under-subgroups:$A_4\times \GL(2,5)$$S_4\times \SL(2,5):C_2$$A_4:\GL(2,5)$$D_4\times \GL(2,5)$$S_3\times \GL(2,5)$$C_4.S_4^2$$C_4\times F_5\times S_4$$C_{24}:C_2\times S_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$S_5\times \GL(2,\mathbb{Z}/4)$