Subgroup ($H$) information
| Description: | $C_2\times A_4:\GL(2,5)$ |
| Order: | \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 3 \\
12 & 19
\end{array}\right), \left(\begin{array}{rr}
13 & 7 \\
16 & 3
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
6 & 5 \\
5 & 1
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 10 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
10 & 11
\end{array}\right)$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5\times S_5\times C_2^2\times S_4$ |
| $\operatorname{Aut}(H)$ | $(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$, of order \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \) |
| $W$ | $C_2\times S_4\times S_5$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2\times S_4\times S_5$ |