Properties

Label 46080.b.4.J
Order $ 2^{8} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4:\GL(2,5)$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 3 \\ 12 & 19 \end{array}\right), \left(\begin{array}{rr} 13 & 7 \\ 16 & 3 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 6 & 5 \\ 5 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Order: \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5\times S_5\times C_2^2\times S_4$
$\operatorname{Aut}(H)$ $(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$, of order \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
$W$$C_2\times S_4\times S_5$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$\GL(2,5)\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$(C_2^2\times A_4):\GL(2,5)$$C_2\times S_4\times \GL(2,5)$$C_2.(S_4\times \GL(2,5))$
Maximal under-subgroups:$A_4\times \SL(2,5):C_2^2$$A_4:\GL(2,5)$$C_2^3:\GL(2,5)$$C_6:\GL(2,5)$$C_2^3:C_{12}.S_4$$C_4\times D_{10}.S_4$$(C_6\times A_4):\OD_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_4\times S_5$