Properties

Label 4608.x.4.d1.a1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{192}$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 109 & 0 \\ 0 & 85 \end{array}\right), \left(\begin{array}{rr} 108 & 0 \\ 0 & 84 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 116 \end{array}\right), \left(\begin{array}{rr} 130 & 0 \\ 0 & 49 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 46 \end{array}\right), \left(\begin{array}{rr} 139 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 84 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 85 \end{array}\right), \left(\begin{array}{rr} 55 & 0 \\ 0 & 186 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $D_{192}:C_{12}$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_{32}.C_8.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $Q_8.(C_8\times S_3).C_2^4$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times C_{192}$
Normalizer:$D_{192}:C_{12}$
Minimal over-subgroups:$D_{192}:C_6$$C_{12}\times C_{192}$$C_{192}.C_{12}$
Maximal under-subgroups:$C_6\times C_{96}$$C_3\times C_{192}$$C_3\times C_{192}$$C_2\times C_{192}$$C_2\times C_{192}$$C_2\times C_{192}$

Other information

Möbius function$2$
Projective image$C_2\times D_{96}$