Subgroup ($H$) information
| Description: | $C_6:D_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,2,3), (1,2,3)(5,6)(8,14)(9,11)(10,15)(12,13), (1,2)(5,6)(8,13)(9,12) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_2^5.D_6^2$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_3^3.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{W}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $72$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |